1. Exercises from Sections 2.9

Problem 1. (Folland 2.9.1) Find the extreme values of $f(x, y)=3 x^{2}-2 y^{2}+2 y$ on the set $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$

- Extreme values can occur either on the boundary, or at critical points on the interior
- On the interior of the disk, we can calculate the gradient:

$$
\nabla f=6 x \partial_{x}+(2-4 y) \partial_{y}=0 \Longleftrightarrow x=0, y=1 / 2
$$

- And the Hessian is given by:

$$
H=\left(\begin{array}{cc}
6 & 0 \\
0 & -4
\end{array}\right)
$$

- The critical point at $(0,1 / 2)$ is a saddle because the Hessian has one negative eigenvalue and one positive one. This point could not be an extreme value, therefore the extrema of $f(x, y)$ occur on the boundary.
- On the boundary $\left\{(x, y) \mid x^{2}+y^{2}=1\right\}$ we have $f(x, y)=3\left(1-y^{2}\right)-2 y^{2}+2 y=-5 y^{2}+2 y+3$
- This function is maximized at $y=1 / 5, x= \pm \sqrt{24 / 25}$
- To find the minima, just check the values at $y= \pm 1$

$$
\begin{gathered}
f(x(1), 1)=-5+2+3=0 \\
f(x(-1),-1)=-5-2+3=-4
\end{gathered}
$$

- Therefore $f(x, y)$ is minimized at $x=0, y=-1$.

Problem 2. Show that $f(x, y)=\left(x^{2}+2 y^{2}\right) e^{-x^{2}-y^{2}}$ has an absolute minimum and maximum on \mathbb{R}^{2}, then find them

- The exponential decay dominates the polynomial growth of $f(x, y)$ as $r \rightarrow \infty$
$\lim _{(x, y) \rightarrow \infty}\left|\left(x^{2}+2 y^{2}\right) e^{-x^{2}-y^{2}}\right|=\lim _{(x, y) \rightarrow \infty} x^{2} e^{-x^{2}-y^{2}}+\lim _{(x, y) \rightarrow \infty} 2 y^{2} e^{-x^{2}-y^{2}} \leq \lim _{(x, y) \rightarrow \infty} x^{2} e^{-x^{2}}+\lim _{(x, y) \rightarrow \infty} 2 y^{2} e^{-y^{2}}=0$
- So $\lim _{r \rightarrow \infty} f(x, y)=0$.
- Also, it is clear that $f(x, y) \geq 0$, therefore by theorem 2.83 the function $f(x, y)$ has a maximum
- We find the maximum by locating the critical points

$$
\begin{aligned}
\nabla f & =\left[2 x e^{-x^{2}-y^{2}}+e^{-x^{2}-y^{2}}(-2 x)\left(x^{2}+2 y^{2}\right)\right] \partial_{x}+\left[4 y^{-x^{2}-y^{2}}+e^{-x^{2}-y^{2}}(-2 y)\left(x^{2}+2 y^{2}\right)\right] \partial_{y} \\
& =\left(2-2 x^{2}-4 y^{2}\right) x e^{-x^{2}-y^{2}} \partial_{x}+\left(4-2 x^{2}-4 y^{2}\right) y e^{-x^{2}-y^{2}} \partial_{y}
\end{aligned}
$$

- We'll also need the second partials, so let's calculate those as well:

$$
\begin{gathered}
f_{x x}=\left(2-6 x^{2}-4 y^{2}\right) e^{-x^{2}-y^{2}}+\left(2 x-2 x^{3}-4 y^{2} x\right)(-2 x) e^{-x^{2}-y^{2}} \\
f_{y y}=\left(4-2 x^{2}-12 y^{2}\right) e^{-x^{2}-y^{2}}+\left(4 y-2 x^{2} y-4 y^{3}\right)(-2 y) e^{-x^{2}-y^{2}} \\
f_{x y}=f_{y x}=-8 x y e^{-x^{2}-y^{2}}+\left(2 x-2 x^{3} y-4 y^{2} x\right)(-2 y) e^{-x^{2}-y^{2}}
\end{gathered}
$$

- Look for (x, y) such that $\nabla f=0$ (notice the exponential factor is stricly positive, so we can ignore it). Split into cases:
- Case 1: $(x, y)=(0,0)$

$$
H^{(0,0)}=\left(\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right)
$$

Since $\operatorname{det} H=\alpha \gamma-\beta^{2}>0$ and $\alpha=f_{x x}>0,(0,0)$ is a minimum

- Case 2: $y=0,2-2 x^{2}-4 y^{2}=0 \Longrightarrow x= \pm 1$

$$
H^{(\pm 1,0)}=\left(\begin{array}{cc}
-4 & 0 \\
0 & 2
\end{array}\right)
$$

Since $\operatorname{det} H=\alpha \gamma-\beta^{2}<0,(\pm 1,0)$ are both saddle points

- Case 3: $x=0,4-2 x^{2}-4 y^{2}=0 \Longrightarrow y= \pm 1$

$$
H^{(0, \pm 1)}=\left(\begin{array}{cc}
-2 & 0 \\
0 & -8
\end{array}\right)
$$

Since $\operatorname{det} H=\alpha \gamma-\beta^{2}>0$ and $\alpha=f_{x x}<0,(0, \pm 1)$ is a minimum

- Case 4: $2-2 x^{2}-4 y^{2}=0$ and $4-2 x^{2}-4 y^{2}=0$. This is impossible, since concentric ellipses do not intersect.

Problem 3. (Folland 2.9.19) Let A be a symmetric $n \times n$ matrix, and let $f(x)=x^{T} A x$ for $x \in \mathbb{R}^{n}$. Show that the maximum and minimum of f on the unit sphere $|x|^{2}=1$ are the largest and smallest eigenvalues of A.
(1) Proceed by method of Lagrange multipliers
(2) Want to find extrema of $f(x)$ subject to the constraint $|x|^{2}=1$
(3) Write $f(x)=\sum_{i j} A_{i j} x_{i} x_{j}$ and let $G(x)=1-\sum_{i} x_{i}^{2}$
(4) The condition to optimize f subject to G is given by:

$$
\nabla f=\lambda \nabla G
$$

(5)

$$
\begin{gathered}
\nabla f=\partial_{k} f=\sum_{i j}\left(A_{i j} \delta_{i k} x_{j}+A_{i j} \delta_{j k} x_{i}\right)=\sum_{j} A_{k j} x_{j}+\sum_{i} A_{i k} x_{i}=2 \sum_{j} A_{k j} x_{j}=2 A x \\
\nabla G=\partial_{k} G=\sum_{i} 2 x_{i} \delta_{i k}=2 x_{k}
\end{gathered}
$$

(6) Then the condition for extremizing f is that $A x=\lambda x$
(7) Since A is symmetric, it is diagonalizable, so pick an orthonormal basis $\left\{y_{j}\right\}$ of \mathbb{R}^{n} consisting of eigenvectors of A; so $A y_{j}=\lambda_{j} y_{j}$.
(8) In this basis, we may write $x=\sum_{j} c_{j} y_{j}$, so that $f(x)=x^{T} A x=\sum_{i} c_{i}^{2} \lambda_{i}$
(9) Now it is clear that the extrema have values $f\left(y_{j}\right)=\lambda_{j}$, and thus the global max and min of f are the largest and smallest eigenvalues of A, respectively.

