
1. Exercises from Sections 2.9

Problem 1. (Folland 2.9.1) Find the extreme values of f(x, y) = 3x2 − 2y2 + 2y on the set{
(x, y) |x2 + y2 ≤ 1

}
• Extreme values can occur either on the boundary, or at critical points on the interior

• On the interior of the disk, we can calculate the gradient:

∇f = 6x∂x + (2− 4y)∂y = 0⇐⇒ x = 0, y = 1/2

• And the Hessian is given by:

H =

(
6 0

0 −4

)
• The critical point at (0, 1/2) is a saddle because the Hessian has one negative eigenvalue and

one positive one. This point could not be an extreme value, therefore the extrema of f(x, y)

occur on the boundary.

• On the boundary
{

(x, y) |x2 + y2 = 1
}

we have f(x, y) = 3(1− y2)− 2y2 + 2y = −5y2 + 2y+ 3

• This function is maximized at y = 1/5, x = ±
√

24/25

• To find the minima, just check the values at y = ±1

f(x(1), 1) = −5 + 2 + 3 = 0

f(x(−1),−1) = −5− 2 + 3 = −4

• Therefore f(x, y) is minimized at x = 0, y = −1.

Problem 2. Show that f(x, y) = (x2 + 2y2)e−x
2−y2

has an absolute minimum and maximum on

R2, then find them

• The exponential decay dominates the polynomial growth of f(x, y) as r →∞

lim
(x,y)→∞

|(x2+2y2)e−x
2−y2

| = lim
(x,y)→∞

x2e−x
2−y2

+ lim
(x,y)→∞

2y2e−x
2−y2

≤ lim
(x,y)→∞

x2e−x
2

+ lim
(x,y)→∞

2y2e−y
2

= 0

• So limr→∞ f(x, y) = 0.

• Also, it is clear that f(x, y) ≥ 0, therefore by theorem 2.83 the function f(x, y) has a maximum

• We find the maximum by locating the critical points

∇f =
[
2xe−x

2−y2

+ e−x
2−y2

(−2x)(x2 + 2y2)
]
∂x +

[
4y−x

2−y2

+ e−x
2−y2

(−2y)(x2 + 2y2)
]
∂y

=
(
2− 2x2 − 4y2

)
xe−x

2−y2

∂x +
(
4− 2x2 − 4y2

)
ye−x

2−y2

∂y

• We’ll also need the second partials, so let’s calculate those as well:

fxx = (2− 6x2 − 4y2)e−x
2−y2

+ (2x− 2x3 − 4y2x)(−2x)e−x
2−y2

fyy = (4− 2x2 − 12y2)e−x
2−y2

+ (4y − 2x2y − 4y3)(−2y)e−x
2−y2

fxy = fyx = −8xye−x
2−y2

+ (2x− 2x3y − 4y2x)(−2y)e−x
2−y2

• Look for (x, y) such that ∇f = 0 (notice the exponential factor is stricly positive, so we can

ignore it). Split into cases:

• Case 1: (x, y) = (0, 0)

H(0,0) =

(
2 0

0 4

)
Since detH = αγ − β2 > 0 and α = fxx > 0, (0, 0) is a minimum
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• Case 2: y = 0, 2− 2x2 − 4y2 = 0 =⇒ x = ±1

H(±1,0) =

(
−4 0

0 2

)
Since detH = αγ − β2 < 0, (±1, 0) are both saddle points

• Case 3: x = 0, 4− 2x2 − 4y2 = 0 =⇒ y = ±1

H(0,±1) =

(
−2 0

0 −8

)
Since detH = αγ − β2 > 0 and α = fxx < 0, (0,±1) is a minimum

• Case 4: 2− 2x2 − 4y2 = 0 and 4− 2x2 − 4y2 = 0. This is impossible, since concentric ellipses

do not intersect.

Problem 3. (Folland 2.9.19) Let A be a symmetric n×n matrix, and let f(x) = xTAx for x ∈ Rn.

Show that the maximum and minimum of f on the unit sphere |x|2 = 1 are the largest and smallest

eigenvalues of A.

(1) Proceed by method of Lagrange multipliers

(2) Want to find extrema of f(x) subject to the constraint |x|2 = 1

(3) Write f(x) =
∑

ij Aijxixj and let G(x) = 1−
∑

i x
2
i

(4) The condition to optimize f subject to G is given by:

∇f = λ∇G

(5)

∇f = ∂kf =
∑
ij

(Aijδikxj +Aijδjkxi) =
∑
j

Akjxj +
∑
i

Aikxi = 2
∑
j

Akjxj = 2Ax

∇G = ∂kG =
∑
i

2xiδik = 2xk

(6) Then the condition for extremizing f is that Ax = λx

(7) Since A is symmetric, it is diagonalizable, so pick an orthonormal basis {yj} of Rn consisting

of eigenvectors of A; so Ayj = λjyj .

(8) In this basis, we may write x =
∑

j cjyj , so that f(x) = xTAx =
∑

i c
2
iλi

(9) Now it is clear that the extrema have values f(yj) = λj , and thus the global max and min of

f are the largest and smallest eigenvalues of A, respectively.


